Technician Class Distant Contacts

Making radio contact over great distance is one of the more interesting aspects of ham radio.  For many radio amateurs, it’s their main pursuit.

G2A11

Working DX (ham-speak for distance) commonly means contacting a station outside your own country but Alaska and Hawaii are certainly DX stations by distance, and in reality good DX is cross-country in a large entity such as the USA.

G2B08

Unfortunately for US hams, the entry-level Technician class license permits rather limited opportunities for making radio contact beyond line of sight.  Don’t despair if you have only a Tech license and want to do more than chat with locals on a repeater.  There are six ways for a Technician licensee to communicate outside of town, outside your state, or even outside the country.  We will briefly mention these here and perhaps cover them in greater detail in future posts.

DX is commonly accomplished on the high frequency (HF) bands due to ionospheric refraction or bending of radio waves.  HF signals routinely reach the other side of the planet and places in between.  So for most hams chasing DX or just working beyond the local area means having a HF transceiver and antenna for the band(s) of interest.

The first two opportunities for Technician licensees to communicate over distance involve traditional HF equipment:

1) USA Technician class operators have privileges to operate CW mode (Morse code) on 80m, 40, 15m and 10m HF bands with a 200W power limit.  This is how hams used to get started in amateur radio and while CW is still quite popular, it is intimidating to many new folks.  So opportunity #1 may not be appealing to many Techs unless they want to learn Morse code (a fun skill, by the way).

2) USA Technicians also have SSB voice and  digital (data) privileges on 10m, again with a 200W limit.

T1B06-2018

This is the only HF voice privilege for this class and the frequency range is very narrow.  The data mode privilege is really helpful here because it allows Techs to work popular digital modes such as JT, FT, PSK,  Olivia and MSK.  However, 10m propagation is highly dependent on solar activity.  The band can be inactive or slow for weeks or months at a time.  So Technicians may be frustrated over a lack of activity for opportunity #2.

Tech license DX opportunities #1 and #2 above on HF bands are admittedly limited by mode and/or active band.  This alone is excellent motivation to upgrade to a General class license.  Consider this possibility.  It’s not a huge leap in learning and study to move up, very achievable for most people.

We know that the VHF and UHF bands for which Technician licensees have full privileges are generally limited to local communication because of line of sight propagation.  Repeaters and/or tall antennas can extend this range but DX is not readily achieved using normal methods.  However, there are four clever technologies that enable DX on VHF/UHF bands: Continue reading

Disable Yaesu WIRES Feature

Yaesu makes some of the best and most popular transceivers for amateur radio use.  In some locations, Yaesus are the majority of radios working local VHF/UHF repeaters.

One of the few criticisms of Yaesu is the WIRES™ feature.  WIRES is an acronym for Wide-coverage Internet Repeater Enhancement System and is unique to this brand of transceiver.  The system can link compatible repeaters together via Voice over Internet Protocol (VoIP).  WIRES-equipped radios using these linked repeaters can communicate over great distances since they use the internet as a pathway.  It’s a hybrid communication scheme combining short-distance radio and long-distance internet.

This sounds like a good idea but is popular only on Yaesu’s home turf in Japan.  While some can be found outside of Japan, WIRES™-compatible repeaters are not common in the rest of the world.   The Internet Repeater Linking Project (IRLP) and Echolink are similar systems more widely adopted and prolific.

So what’s the problem with WIRES™?  It uses a dual-tone multi-frequency (DTMF) signal to identify a Yaesu transceiver to a WIRES-compatible repeater.  Unfortunately, when a non-compatible repeater see DTMF signals it Continue reading