Why Hams Care About Solar Activity

As we learned in an earlier post on the ionosphere, the real magic in ham radio is skywave propagation where HF  band (and sometimes VHF) signals can travel well beyond line of sight (over the horizon), even to the other side of the planet if conditions are right and radio waves may bend back to earth in the ionosphere.

The sun is largely responsible for energizing the ionosphere and affecting its quality (height, density, thickness, disturbance).  Unfortunately for hams, solar activity is highly variable, not constant.  There are periods of excellent skywave propagation when the sun is busy and then times of poor propagation when the sun is quiet.

Solar_Cycle_Montage
Montage of Sun’s activity over 10 years (solar cycle 23)

This topic is very complex and not completely understood.  Study is ongoing and radio amateurs have contributed greatly to the science; much has been learned in the last 100 years or so since radio became a real thing.   Great detail is found below in some excellent web links.  A brief summary of how solar activity influences the ionosphere is presented here:

  • Our sun tends to be active in 11 year cycles, on average
  • Sunspot counts are a general indicator of solar activity
  • Propagation on higher frequencies is more influenced by solar activity than the lower frequency bands.
  • Ionospheric condition is influenced by the Earth’s magnetic flux lines.
  • Earth’s magnetic field is strongly influenced by solar wind (largely a day/night phenomenon but solar wind can spike with disturbances).
  • Solar flares, coronal mass ejections (CME), and coronal holes cause geomagnetic storms which affect or disrupt radio communication and create noise.

Solar/Space weather is a study of how solar events affect the earth’s magnetosphere.  A/K (long/short-term) indexes measure the stability of Earth’s magnetic field.

Hams worldwide who are active on HF and VHF bands pay a lot of attention to solar activity because of how it affects propagation and noise levels.  QRZ features N0NBH’s graphic summary of important solar and geomagnetic conditions on their main page as shown below.  Some hams and ham websites include this data on their own pages as well, so you may see this sort of info a lot.

S-T Data QRZ

Presently (2018-2019) we have days on end with no sunspot numbers, resulting in awful HF propagation (note sunspot number SN=0 above).

Solar Activity Level

Despite these poor conditions that limit decent phone (voice) and even CW (Morse) QSOs, hams can still make contact with domestic and international stations using some of the newer digital modes which can decode extremely weak (inaudible) signals.

We are hopefully approaching the end of the current solar minimum with dreams of increasing solar activity in the coming several years.

Solar activity is so important to hams that there are 16 related questions in the General class license exam question pool (only two with the limited privilege Tech pool).  Some Continue reading

Why Hams Care About the Ionosphere

There are many questions concerning the ionosphere and its layers in US license exams.

T3C02-2018

Experienced hams talk about the ionosphere a lot these days and we see plenty written on the topic in amateur radio websites and magazines.  So what’s the importance of the ionosphere?

The real magic in ham radio is skywave propagation where signals can travel well beyond line of sight, even to the other side of the planet if conditions are right.  We can have two-way radio communication between Iceland and Australia and places in between because voice, video and data signals may be bent back to earth by the ionosphere.

T3A112-2018

The ionosphere is shell of electrons and electrically charged atoms and molecules (ions) that surrounds the Earth, stretching from a height of about 50 km (31 mi) to more than 1,000 km (620 mi).  Because this band is electrically active the ionosphere is able to reflect or refract electromagnetic radiation at certain frequencies, the HF bands in particular.  For most hams communicating beyond line of sight is a big deal and the ionosphere is what makes long distance (DX) contacts commonplace.

Ionosphere bending

There are two defined ionospheric layers at night and four in daytime, the difference being exposure to the sun which provides most of the energy to the ionosphere.

Ionosphere_Layers

In daylight the F layer separates into F1 and F2 regions.  Because F2 is farthest from the earth’s surface it can bend radio waves the greatest distance.

G3C03-2015

Long-distance propagation changes with day/night cycles and seasonal variance away from the equator.  There are numerous anomalies and disturbances that can affect the ionosphere.  Between all these factors the ionosphere is not a uniform shell; it has varying height, thickness, and density.  This continually changing area makes HF propagation highly variable.

Also known as skip, ionospheric propagation of shortwave (HF) radio signals travel a specific radius or skip distance from the transmitting antenna.  This makes received signals particularly strong at the skip distance.

T3A09-2018

In addition to single skip distance, the earth itself can reflect/refract signals from the ionosphere back up, resulting in a secondary skip or hop and perhaps Continue reading

Ham Radio Bands

The term band is thrown around constantly in ham radio discussion and it is included in  many questions in US license exam pools.  So what exactly is a radio band?

Parts of the radio frequency spectrum allocated for a common purpose are called a band.  Besides amateur radio, the reader may be familiar with USA commercial broadcast ranges known as AM band and the FM band, or another personal communication chunk of frequencies called the citizens band (CB).

With amateur radio, bands are generally associated with a number (2m or 40m, for example).  This number is approximately equal to the wavelength of that span of frequencies

t3b07-2018

We say approximately because a specific wavelength is only valid at one exact frequency and that may be outside the actual range of the band.

Shown below is a chart of the current US amateur bands (dated 2017):

band_chart_image_for_arrl_web

These 18 bands are are named by their approximate wavelength.  For those who care about such details, the named wavelength (λ) may not actually be inside the designated frequency range.  A table of these is given below:

band wavelengths

Some do, but why don’t all the meter bands line up with wavelengths inside the band?

Lots of discussion on this issue can be found on the internet and two particularly good links are given in the first two references below.  It’s a real combination of history, simplicity, misuse, and existing broadcast band names.

0.7m is the same as 700mm or 70cm; the 70cm name is more commonly used Continue reading

Indirect RF Hazards

Part 3 on Safety

Safety is an important topic in ham radio.  There are 11 questions on electrical hazards in the USA Technician class license exam pool, 13 questions on tower safety and associated grounding, and 13 questions on radio frequency (RF) hazards.

Part 1 on general electrical hazards and Part 2 on contact RF hazards were posted previously.  This post will address indirect RF hazards.  In case you are not familiar with the specifics of RF energy, refer to our post on the subject.

Here we are concerned about non-contact RF energy.  A long and involved topic (sorry about that) but full of useful detail.

While it involves radiation, RF energy radiates at lower wavelengths where it is least hazardous.

radiation spectrum.JPG

From the electromagnetic spectrum diagram above we see that radio waves are on the low end of energy levels.  As the frequency increases (wavelengths decrease) the energy in electron volts increases exponentially.  Energy above 250eV (or so) is ionizing, which in addition to radiation burns can cause cell damage and mutations, leading to cancer and other maladies, as would radioactive material.

T0C12-2018

Fortunately for hams, all radio frequencies are well below the ionizing radiation energy levels.

T0C01-2018

Ham radio operators are radio  active, not radioactive. 🙂Amateur radio activeNow just because RF radiation is non-ionizing doesn’t mean it is completely safe.  Besides the direct contact hazard, exposure to radio frequency energy may cause localized tissue heating, particularly in the eyes and male reproductive area (here’s where a lady ham has an advantage, hihi).  Non-thermal effects of RF radiation are being studied constantly because, while compelling, they are somewhat ambiguous and unproven.

Because RF energy has this radiated exposure risk, rules and regulations have arisen to protect people from such hazards.  In the USA this is done at the federal level by both the FCC (radio communications) and OSHA (occupational).  There are also guidelines for RF radiation published by the ARRL and the IEEE.  Internationally, most countries apart from the US have similar guidelines, as does the World Health Organization (WHO).  References to some of these are given at the end of this presentation.

Specific to US radio amateurs, the FCC instituted RF field exposure limits called Maximum Permissible Exposure (MPE). Continue reading

Radio Frequency (RF)

Radio signals are sent via radio waves, which are a form of electromagnetic energy or radiation. T3A07-2018

Recall that a radio wave consists of both electric and magnetic fields oscillating at right angles to each other.EM Fields.png

 

T3B03-2018.png

Combining electrical and magnetic gives us the term electromagnetic.

T5C07-2018

Like all waves, radio waves vibrate or oscillate at a specific rate or frequency.

T5A12-2018.png

ewaves.gifThis vibration frequency is normally measured in cycles per second and its units are Hertz.  T5C05-2018.pngRates of oscillation in radio work are thousands and millions of Hertz (Hz).  With standardized metric prefixes for SI units , this means practical radio frequencies are in kHz, MHz, and GHz.

The common and familiar term RF is short for radio frequency.  It’s really an adjective, not a noun.  While we may say just RF (“You have a big RF leak, there, Fred”), we really mean radio frequency energy or signals.  RF is not a thing in and of itself.

T5C06-2018

So what is a radio frequency , then?  They are a large chunk of frequencies in the middle of the electromagnetic spectrum (the range of possible frequencies from 0 to measurably high).  Technically radio frequencies start at low audio frequencies and run up to just below infrared light, basically 30Hz-300GHz.  Different sources specify other upper/lower boundaries because a more practical range is the low frequency band up through microwaves.  However you define it, this range of frequencies is  known as the radio spectrum.

RF Spectrum.gif

While hams can use very low frequencies on one end and go up to microwave frequencies at the high end, the more common radio amateur frequencies are in the shortwave, VHF, and UHF range.

We will follow up with detailed posts on the important topics of RF wavelength and amateur radio bands, along with RF safety.  Coming soon to Newhams.info; stay tuned.

 

How Far Can I Communicate?

One of the more interesting questions a new or prospective ham will have is, “how far can I communicate?”  The frustrating answer is, “it depends…” (don’t you hate hearing that?)

dx-map

There are many factors involved in the limits to distance of radio communication.  Carrier frequency is the huge one, followed by operating mode, antenna characteristics and transmit power. Time of day, solar activity and the season (spring, summer, autumn, winter) also have a big impact on range.  Natural (thunderstorms, aurora, geologic, cosmic) and man-made (crowded band, power lines, noisy electronics) interference can also limit or disrupt a radio contact.  Also factor in the use of repeaters (terrestrial and space satellites) or reflective objects (structures, moon, meteor showers), plus unusual weather conditions and you have a lot to consider.

Since many hams get started using VHF/UHF radios for local communication, let’s talk about this first.  VHF/UHF radio wave propagation is normally limited to line-of-sight, meaning the antennas at each end must have a clear path between them (no obstructions such as buildings, trees, and particularly, the earth).

3-20 miles is a realistic range for VHF/UHF hand-held radios on the ground, depending mainly on a clear path and relative height of the two parties.  Throw in a repeater with a high antenna and that range extends considerably.  Raising your own antenna up higher Continue reading

Get on the Air Now!

An outstanding resource for amateur radio operators, and new or prospective hams in particular, is a paperback book by Don Keith N4KC entitled, GET ON THE AIR…NOW!

    

There is something for everyone here: Folks who are interested in ham radio, those who just got a license, experienced hams who lose interest, and long-time hams who are looking for something to share with newbies. N4KC covers most of what current and prospective ham radio operators need to know and he does a great job of selling the hobby/interest. And no, he’s not pushing Morse code, although CW operation is one of the more interesting aspects of amateur radio.

The main emphasis of the book is encouraging licensees to actually get on the air and experience real ham radio, not to get frustrated with bad experiences and limited equipment and then give up on our hobby.  He addresses some of the common discouragements and steers us to realistic remedies.  Chapter five is a practical discussion of antennas and I particularly appreciate chapter six with Don’s concise description of what to expect on the HF bands.

gotan TOC

The second half of the book is a comprehensive dictionary of “ham-speak”–amateur radio terms, abbreviations and slang, useful to all hams, new and old.

About $19 with a Kindle version for $9.  Highly recommended and the first item listed on a new site page entitled Recommended Reading.